Preliminary communication

A novel Lewis-acid-catalyzed 1,2-OMe shift reaction of an acetylenic ether on a dipalladium framework. X-ray structure of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu \text {-dppm })_{2}(\mu-\mathrm{C}=\mathrm{C}(\mathrm{OMe})(\mathrm{Me}))\right]$

Constanze Kluwe, Jan Müller, Julian A. Davies *
Departments of Chemistry and Medicinal Chemistry, University of Toledo, Toledo, OH 43606, USA

Received 26 February 1996; revised 27 May 1996

Abstract

Treatment of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu \text { - } \mathrm{dppm})_{2}\right]$ with $\mathrm{MeOC} \equiv \mathrm{CMe}^{\text {in }} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of catalytic amounts of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ led to the formation of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu \text {-dppm })_{2}(\mu-\mathrm{C}=\mathrm{C}(\mathrm{OMe})(\mathrm{Me}))\right]$ via a $1,2-\mathrm{OMc}$ enst yeaction. The complex was characterized crystallographically.

Keywords: Palladium; Acetylene; Lewis acid; Rearrangement; Vinylidene: Phosphine

1. Introduction

The dipalladium(I) complex, $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu \text {-dppm })_{2}\right]$, is known to react with acetylenes to form either 1,2-dimetalated olefins (acetylene adducts) or 1,1-dimetalated olefins (vinylidene complexes) [1-3] (Scheme 1). Formation of the latter invoives a metal-assisted 1,2 -shift reaction which, while relatively common for terminal acetylenes [4], is unusual in the case of acetylenes bearing helcroatomic substituents $[3,5=13]$. Reactions of acetylenes without electron-withdrawing groups with $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu \text {-dppm })_{2}\right]$ are slow and may be facilitated by Lewis-acid catalysis which leads to the formation of acetylene adducts [14].

We have recently reported that Lewis acids catalyze $1,2-\mathrm{SMe}$ shifts in the reaction of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu \text {-dppm) })_{2}\right]$ with MeSCㅌCSMe [15]. In the presence of a Lewis acid only the vinylidene complex, $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu\right.$ -$\left.\mathrm{dppm})_{2}\left(\mu-\mathrm{C}=\mathrm{C}(\mathrm{SMe})_{2}\right)\right]$, was formed while, in the absence of Lewis acid, exclusively the acetylene adduct, $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{dppm})_{2}(\mu-\mathrm{MeSC}=\mathrm{CSMe})\right]$, was produced. The acetylene adduct could then be rearranged to the corresponding vinylidene isomer by addition of catalytic amounts of a Lewis acid (Scheme 2).

The results with MeSC=CSMe parallel those obtained earlier from an investigation of the reactions of

[^0]

Schame 1.
[$\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{dppm})_{2}$] with $1 \mathrm{C}=\mathrm{Cl}$ [3]. In both cases, vinylidene formation resulting from a 1,2 -shift of a soft atom was observed. Work with $\mathrm{Et}_{2} \mathrm{NC}_{\boldsymbol{m}} \mathrm{CNE}_{2}$, in contrast, revealed no evidence of a $1,2 \mathrm{NEt}_{2}$ shift in reactions with $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{dppm})_{2}\right]$ [16]. Accordingly, reactions of acetylenic ethers are of particular interest since the -OR group could show similarities to $-\mathrm{NR}_{2}$ (first row) or to -SR (Group VI).

We now wish to report the formation of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu\right.$ -$\mathrm{dppm})_{2}(\mu-\mathrm{C}=\mathrm{C}(\mathrm{OMe})(\mathrm{Me})$)] in the reaction of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu \text {-dppm) })_{2}\right.$ [17] with $\mathrm{MeOC}=\mathrm{CMe}$ [18] in the presence of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$. This reaction represents the first Lewis-acid-catalyzed 1,2-shift of an acetylene bearing an alkoxy group. To the best of our knowledge only

Scheme 2.

Scheme 3.
one somewhat-related example of a 1,2-shift reaction of an acetylene containing an oxygen functional group has so far been described [9.10]. The reaction differs from that reported here since, in the reaction of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{9}(\mathrm{NCMe})\right]$ with $\mathrm{EtOC}=\mathrm{CMe}$, the 1.2-OEt rearrangement was accompunied by CO insertion (Scheme 3).

2. Results and discussion

Treatment of a solution of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu \text {-dppm) })_{2}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with two equivalents of $\mathrm{MeOC}=\mathrm{CMe}$ in the presence of catalytic amounts of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ led, over a period of 20 h , to the formation of a light yellow solid which settled out of solution and proved to be air stable. It was washed with cold $\mathrm{CH}_{3} \mathrm{Cl}_{2}$, dried in vacuo, and recovered in ca. 71\% yield, based on palladium. (Anal. Found: C. $55.6 ;$ H. 4.5. for $\mathrm{C}_{54} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{OP}_{4} \mathrm{Pd}_{2}$. Calc.: C. 57.7: H. 4.5\%, NMR (CDCl_{3}): (${ }^{\prime} \mathrm{P}(1 \mathrm{H})$) $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \delta$ $10.5=14\left({ }^{\prime} \mathrm{H}\right) \delta 1.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $6.9 .8 .1\left(\mathrm{~m}, 40 \mathrm{H}, \mathrm{C}_{8} \mathrm{H}_{6}\right), 2.7(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}, \mathrm{P}), 3.3(\mathrm{~m}$. $2 \mathrm{H}, \mathrm{PCH}, \mathrm{P})$). The " $\mathrm{P}\left(\mathrm{H}\right.$ H NMR spectrum (CDCl_{3}, rel. to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) showed the $\mathrm{AA}^{\prime} \mathrm{BB}^{+}$spliting pattern expected for an unsymmetrical dinuclear species, centered at 12.5 ppm . This value proved to be very close to that observed for the related, sulfur-containing vinylidene complex. $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{dppm})_{2}(\mu-\mathrm{C}=\mathrm{C}(\mathrm{SMe})(\mathrm{Me}))\right]$ ($A^{\prime} \mathrm{BB}^{\prime}$ centered at 12 ppm) [13].

Fg. I. ortep diagram of $\left.\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{dppm})_{2}(\mu-\mathrm{C}=\mathrm{COMe})(\mathrm{Me})\right)\right]$. showing 50% probability ellipsoids. Selected bond lengths (\mathcal{A}) and angles (deg): $\mathrm{Pd}(1)-\mathrm{Cl}(1)$ 2.417(1), $\mathrm{Pd}(2)-\mathrm{Cl}(2) 2.403(2), \mathrm{Pd}(1)-\mathrm{P}(1)$ 2.312(1), $\operatorname{Pd}(1)-\mathrm{P}(2)$ 2.318(1), $\mathrm{Pd}(2)-\mathrm{P}(3)$ 2.300(1), $\mathrm{Pd}(2)-\mathrm{P}(4)$ 2.313(1), $\mathrm{Pd}(1)-\mathrm{C}(1) \mathrm{1.991}(5), \mathrm{Pd}(2)-\mathrm{C}(1) \mathrm{1.991}(5), \mathrm{C}(1)-\mathrm{C}(2)$ $1.325(8), C(2)-O(1) 1.547(7), C(2)-C(3) 1.40(1), O(1)-C(4) 1.447$, $\mathrm{Pd}(1) \cdots \operatorname{Pd}(2)$ 3.2248(5); CK(1)-Pd(1)-P(1) 92.33(5), CI(1)-Pd(1)$P(2) \quad 95.72(5), \quad \mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{C}(1) \quad 177.0(2), \quad \mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$ $171.59(5), \mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{C}(1) 86.5(1), \mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{C}(1) 85.3(1)$, $C(2)-P d(2)-P(3) \quad 92.41(5), \quad C l(2)-P d(2)-P(4) \quad 94.72(5), \quad C l(2)-$ $\mathrm{Pd}(2)-\mathrm{C}(1) 177.6(1), \mathrm{P}(3)-\mathrm{Pd}(1)-\mathrm{P}(4) \mathrm{171.18(6)}, \mathrm{P}(3)-\mathrm{Pd}(2)-\mathrm{C}(1)$ 86.7(1), P(4)-Pd(2)-C(1) 86.0(1). $\operatorname{Pd}(1)-C(1)-P d(2) \quad 108.2(2)$. $\mathrm{Pd}(1)-\mathrm{C}(1)-\mathrm{C}(2) 125.0(4), \mathrm{Pd}(2)-\mathrm{C}(1)-\mathrm{C}(2) 126.8(4), \mathrm{C}(1)-\mathrm{C}(2)-$ $O(1)$ 116.6(5), $C(1)-C(2)-C(3) 123.3(7), C(2)-O(1)-C(4) 109.7(2)$.
$\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu \text {-dppm) })_{3}\right.$ was found to be unreactive towards MeOC EME in the absence of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$. A " $\mathrm{P}\left({ }^{\prime} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of the reaction solution recorded after 48 h stirring in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, at room temperature exhibiled one signal which cortesponded to the starting material. After removal of the solvent only starting material was recovered.

Since $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu \text {-dppm })_{2}\right]$ as well as $\mathrm{MeOC}=\mathrm{CMc}$ separately react with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$, the sequence of the acid-catalyzed reaction is unclear.

Single crystals were grown by slow evaporation of the solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. X-ray analysis revealed the formation of a dinuclear vinylidene complex (Fig. 1).

Crystal data: $\mathrm{C}_{54} \mathrm{H}_{50} \mathrm{Cl}_{2} \mathrm{OP}_{4} \mathrm{Pd}_{2}: \quad M=1122.60$; tetragonal. $P 4_{3}: a=21.184(4) \AA, c=14.233(2) \AA i, V=$ $6387(3) A^{3}: Z=4 ; \quad D_{\mathrm{c}}=1.17 \mathrm{gcm}^{-3}: \lambda(\mathrm{MoK} \alpha)=$ $0.71073 \AA ; \mu=7.7 \mathrm{~cm}^{-1}: F(000)=2272 ; T=213 \pm$ 1 K ; yellow crystal, prism, $0.50 \times 0.35 \times 0.20 \mathrm{~mm}^{3}$. mounted on a glass fiber, Enraf-Nonius CAD4 diffractometer, graphite monochromator. $\omega-\theta$ scan technique. unit cell constants from the setting angles of 25 reflections in the range $12<0<13^{\circ}$, empirical absorption correction (min, correction 0.819 , max. 1.210), maximum $2 \theta=52.0^{\circ}, 0<h<26 ; 0<k<26 ; 0<1<17$; anisotropic decay (from 0.950 to 1.078 on 1), reflection averaging $R(i n t)=2.3 \%, 6905$ total reflections measured. 6541 unique, 5631 reflections with $\left.F_{0}^{2}\right\rangle$ $3.0 \sigma\left(F_{0}^{2}\right)$, solution by direct methods, refinement by
full-matrix least squares, function minimized was $\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$, weight w is defined as $4 F_{0}^{2} / \sigma^{2}\left(F_{0}^{2}\right)$; coordinates fixed, multiplicity set to 0.5 for OI , Ola, C4 and C4a of disordered vinylidene moiety, isotropic thermal parameters refined for $\mathrm{Ol}, \mathrm{Ola}, \mathrm{C} 3, \mathrm{C3a}$ and C4 of vinylidene moiety, one phenyl ring found to be disordered, multiplicity for carbon atoms C33, C33a, C34, C34a, C35, C35a, C36 and C36a of this phenyl ring set to 0.5 and isotropic thermal parameters refined, anisotropic thermal parameters refined for all other non-hydrogen atoms, hydrogen atoms refined with $U_{\text {iso }}$ $=1.3 \times U$ (bonding atom), 547 refined parameters, R $=0.033, w R=0.043, S=1.42$, largest shift 0.03σ, high peak in final difference map 0.57(9)e \AA^{-3}, low peak $-0.08(9) \mathrm{e} \AA^{-3}$. Scattering factors for neutral atoms were taken from International Tables for X-ray Crystallography (1974).

The metal centers were held together by two mutually trans dppm ligands. The α-carbon (C(1)) of the vinylidene moiety symmetrically bridged the palladium atoms; trans to the vinylidene moiety were two chloride ligands, completing the approximately square-planar coordination geometry around paliadium in this 'A-frame' complex. The vinylidene moiety was unsymmetrical. The two different substituents (Me and OMe) on the β-carbon (C(2)) were found to be disordered over a two-fold axis. The distance of $1.325(8) \AA$ between $\mathrm{C}(1)$ and $\mathrm{C}(2)$ of the vinylidene moiety is consistent with sp^{2} hybridization. The bridging vinylidene moiety is not supported by any significant metal-metal bonding interaction $(\mathrm{Pd}(1) \cdots \mathrm{Pd}(2)=3.2248(5) \AA)$.

The formation of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu \text {-dppm })_{2}(\mu\right.$ $\mathrm{C}=\mathrm{C}(\mathrm{OMe})(\mathrm{Me}))$ indicates that Lewis-acid catalysis of 1.2-heteroatom shift reactions of acetylenes is not limited to sulfur groups. It represents the first straightforward $1,2.0 \mathrm{Me}$ rearrangement of an acetylene (see Scheme 3). The mechanism of the Lewis-acid-catalyzed acetylene--vinylidene isomerization is under investigation.

Acknowledgements

The financial support of the donors of the Petroleum Research Fund, administered by the American Chemical Society, is acknowledged. X-ray facilities were provided by the College of Arts and Sciences Instrumentation Center at The University of Toledo.

References

[1] C.-L. Lee, C.T. Hunt and A.L. Balch, Inorg. Chem., 20 (1981) 2498.
[2] A.L. Balch, C.-L. Lee, C.H. Lindsay and M.M. Olmstead, J. Orgunomet. Chem., 177 (1979) C22.
[3] J.A. Davies, A.A. Pinkerton, R. Syed and M. Vilmer, J. Chem. Soc. Chem. Commun., (1988) 47.
[4] M.1. Bruce, Chem. Rev., 9 (1991) 197 and references cited therein.
[5] I.T. Horvalh, G. Palyi and L. Marko, J. Chem. Soc. Chem. Commun., (1979) 1054.
[6] I.T. Horvath, G. Palyi, L. Marko and G.D. Andretti, Inorg. Chem., 22 (1983) 1049.
[7] C. Löwe, H.-U. Hund and H. Berke, J. Organomet. Chem., 371 (1989), 311.
[8] D.E. Fogg, S.A. MacLaughlin, K. Kwek, A.A. Cherkas, N.J. Taylor and A.J. Carty, J. Organomer. Chem., 352 (1988), Cl7.
[9] R.D. Adams, G. Chen, M.P. Pompeo and J. Yin. Organomerallics, 10 (1991) 2^{541}.
[10] R.D. Adams, G. Chen, L. Chen and J. Yin. Orgamme:allics. 12 (1993) 2644.
[1I] H. Werner, M. Baum, D. Schneider and B. Windmüller, Organomerullics, 13 (1994) 1089.
[12] D.C. Miller and R.J. Angelici, Organometallics, 10 (1991) 79.
[13] J.A. Davies, K. Kirschbaum and C. Kluwe, Orgamometallics, /3] (1994) 3664.
[14] S.J. Higgins and B.L. Shaw. J. Chem. Sic: Chem. Commun., (1986) 1629
[15] C. Kluwe and J.A. Davies, Orgammertulics, 14 (1995) 4257.
[16] S. Kloplenstein, C. Kluwe, K. Kirychbaum and J.A. Davies, Cun. J. Chem., in press.
[17] A.L. Balch and L.S. Benner. Imorg. Symh., $2 /$ (1982) 47.
[18] L. Brandsma. Preparative Acetylenic Chemisry, Elsevier, New York. 1988. p. 174.

[^0]: ${ }^{\bullet}$ Corresponding author.

